翻訳と辞書
Words near each other
・ Wilfried Urbain Elvis Endzanga
・ Wilfried Van Moer
・ Wilfried van Winden
・ Wilfried Vandaele
・ Wilfried von Engelhardt
・ Wilfried Wesemael
・ Wilfried Wöhler
・ Wilfried Zaha
・ Wilfrith Elstob
・ Wilfrith Green
・ Wilfrith I (bishop of Worcester)
・ Wilfrith II (bishop of Worcester)
・ Wilful Disregard
・ Wilful fire raising
・ Wilfy Rebimbus
Wilf–Zeilberger pair
・ Wilga
・ Wilga (river)
・ Wilga gas field
・ Wilga Rivers
・ Wilga, Burkina Faso
・ Wilga, Masovian Voivodeship
・ Wilga, Western Australia
・ Wilgamuwa Divisional Secretariat
・ Wilgar Campbell
・ Wilgar, Ontario
・ Wilgartaburg
・ Wilgartswiesen
・ Wilge River
・ Wilge River (Olifants)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wilf–Zeilberger pair : ウィキペディア英語版
Wilf–Zeilberger pair
In mathematics, specifically combinatorics, a Wilf–Zeilberger pair, or WZ pair, is a pair of functions that can be used to certify certain combinatorial identities. WZ pairs are named after Herbert S. Wilf and Doron Zeilberger, and are instrumental in the evaluation of many sums involving binomial coefficients, factorials, and in general any hypergeometric series. A function's WZ counterpart may be used to find an equivalent, and much simpler sum. Although finding WZ pairs by hand is impractical in most cases, Gosper's algorithm provides a sure method to find a function's WZ counterpart, and can be implemented in a symbolic manipulation program.
==Definition==
Two functions, ''F'' and ''G'', form a pair if and only if the following two conditions hold:
: F(n+1,k)-F(n,k) = G(n,k+1)-G(n,k)\,
: \lim_G(n,M) = 0. \,
Together, these conditions ensure that the sum
: \sum_^\infty () = 0
because the function ''G'' telescopes:
:\begin \sum_^\infty ()
& ^M() \\
& ^M () \\
& = 0-0 \\
& {} = 0.
\end{align}

If ''F'' and ''G'' form a WZ pair, then they satisfy the relation
: G(n,k) = R(n,k) F(n,k),
where R(n,k) is a rational function of ''n'' and ''k'' and is called the ''WZ proof certificate''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wilf–Zeilberger pair」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.